Comparison of whole word and subword modeling techniques for speaker verification with limited training data

نویسندگان

  • Stephan Euler
  • Rainer Langlitz
  • Joachim Zinke
چکیده

In this paper we use whole word and subword hidden Markov models for text dependent speaker veri cation. In this application usually only a small amount of training data is available for each model. In order to cope with this limitation we propose a intermediate functional representation of the training data allowing the robust initialization of the models. This new approach is tested with two data bases and is compared both with standard training techniques and the dynamic time warp method. Secondly, we give results for two types of subword units. The scores of these units are combined in two di erent ways to obtain word error rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Towards Unsupervised Training of Speaker Independent Acoustic Models

Can we automatically discover speaker independent phonemelike subword units with zero resources in a surprise language? There have been a number of recent efforts to automatically discover repeated spoken terms without a recognizer. This paper investigates the feasibility of using these results as constraints for unsupervised acoustic model training. We start with a relatively small set of word...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

i-vector Based Speaker Recognition on Short Utterances

Robust speaker verification on short utterances remains a key consideration when deploying automatic speaker recognition, as many real world applications often have access to only limited duration speech data. This paper explores how the recent technologies focused around total variability modeling behave when training and testing utterance lengths are reduced. Results are presented which provi...

متن کامل

Recent Progress in Robust Vocabulary-Independent Speech Recognition

This paper reports recent efforts to improve the performance of CMU's robust vocabulary-independent (VI) speech recognition systems on the DARPA speaker-independent resource management task. The improvements are evaluated on 320 sentences that randomly selected from the DARPA June 88, February 89 and October 89 test sets. Our first improvement involves more detailed acoustic modeling. We incorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997